If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+1-6=0
We add all the numbers together, and all the variables
10x^2-5=0
a = 10; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·10·(-5)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*10}=\frac{0-10\sqrt{2}}{20} =-\frac{10\sqrt{2}}{20} =-\frac{\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*10}=\frac{0+10\sqrt{2}}{20} =\frac{10\sqrt{2}}{20} =\frac{\sqrt{2}}{2} $
| (7x+7)=84 | | 11x-4=2x+33 | | x-25=41 | | 7x–13=10x+8 | | 5(4x÷2)=130 | | 6v+21=-5(v-2) | | 2(x+8)=40-× | | 8+4k=6k | | 4K+8=6k | | 4(6x=10)=-8(-3x+5) | | 11+k=6k | | 6,2-9,3d+5,8d=3-2d-1,3 | | 20j-19j-j+12j=24 | | -4(x-8)=-6(4-3x) | | 33u+6u-36u+2u-4u=31 | | 7x+x=45 | | 15m-4m+4m+5m+6=26 | | 12r-9r=33 | | 4m+3m+4m-10m-1=19 | | 3a/4=15/4 | | 4m+3m+4m-10m—=19 | | 13w-10w-2w=7 | | 7w+2w+5w-12w=12 | | 9x−91=6x+76=180 | | 4y+3y+y-4y=20 | | 0,1z+0,7-0,6z=0,9z+0,3-0,4 | | 33=32x+1 | | 7r=-120 | | 12d+4d-16d+5d=15 | | 2r-2r+r-1=11 | | 5y+14=-43-3y | | 12g-2g-5g=10 |